The recent electrification of our world presents us with a lot of unknowns.
Early research into the effects of electromagnetic radiation and excess charge in the human body have produced some concerning but also very promising results. How we use and develop this knowledge to improve our urban infrastructure and the future well-being of our communities is up to all of us.
Oschman JL, Chevalier G, Brown R. The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. J Inflamm Res. 2015;8:83-96. Published 2015 Mar 24. doi:10.2147/JIR.S69656
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378297/Brown, R. and Chevalier, G. (2015) Grounding the Human Body during Yoga Exercise with a Grounded Yoga Mat Reduces Blood Viscosity. Open Journal of Preventive Medicine, 5, 159-168. doi: 10.4236/ojpm.2015.54019
https://www.researchgate.net/publication/275229172_Grounding_the_Human_Body_during_Yoga_Exercise_with_a_Grounded_Yoga_Mat_Reduces_Blood_ViscosityBrown R, Chevalier G, Hill M. Grounding after moderate eccentric contractions reduces muscle damage. Open Access J Sports Med. 2015 Sep 21;6:305-17. doi: 10.2147/OAJSM.S87970. PMID: 26443876; PMCID: PMC4590684
https://www.ncbi.nlm.nih.gov/pubmed/26443876Müller E, Pröller P, Ferreira-Briza F, Aglas L, Stöggl T. Effectiveness of Grounded Sleeping on Recovery After Intensive Eccentric Muscle Loading. Front Physiol. 2019;10:35. Published 2019 Jan 28. doi:10.3389/fphys.2019.00035
https://www.ncbi.nlm.nih.gov/pubmed/22757749Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P. Earthing: health implications of reconnecting the human body to the Earth's surface electrons. J Environ Public Health. 2012;2012:291541. doi:10.1155/2012/291541
https://www.ncbi.nlm.nih.gov/pubmed/25748085Broom KA, Findlay R, Addison DS, Goiceanu C, Sienkiewicz Z. Early-Life Exposure to Pulsed LTE Radiofrequency Fields Causes Persistent Changes in Activity and Behavior in C57BL/6 J Mice. Bioelectromagnetics. 2019 Oct;40(7):498-511. doi: 10.1002/bem.22217. Epub 2019 Sep 15. PMID: 31522469; PMCID: PMC6790696.
https://www.ncbi.nlm.nih.gov/pubmed/31522469Miller AB, Sears ME, Morgan LL, et al. Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front Public Health. 2019;7:223. Published 2019 Aug 13. doi:10.3389/fpubh.2019.00223
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6701402/Dr. Martin Pall Global Research, September 23, 2019, 5G: Great risk for EU, U.S. and International Health! Compelling Evidence for Eight Distinct Types of Great Harm Caused by Electromagnetic Field (EMF) Exposures and the Mechanism that Causes Them
https://www.globalresearch.ca/5g-great-risk-eu-u-s-international-health/5689929Carpenter DO. Electromagnetic fields and cancer: the cost of doing nothing. Rev Environ Health. 2010 Jan-Mar;25(1):75-80. doi: 10.1515/reveh.2010.25.1.75. PMID: 20429163.
https://www.ncbi.nlm.nih.gov/pubmed/20429163Carpenter DO. Extremely low frequency electromagnetic fields and cancer: How source of funding affects results. Environ Res. 2019 Nov;178:108688. doi: 10.1016/j.envres.2019.108688. Epub 2019 Aug 24. PMID: 31476684.
https://www.ncbi.nlm.nih.gov/pubmed/31476684Kheifets L, Repacholi M, Saunders R, van Deventer E. The sensitivity of children to electromagnetic fields. Pediatrics. 2005 Aug;116(2):e303-13. doi: 10.1542/peds.2004-2541. PMID: 16061584.
https://www.ncbi.nlm.nih.gov/pubmed/16061584Meo SA, Alsubaie Y, Almubarak Z, Almutawa H, AlQasem Y, Hasanato RM. Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus. Int J Environ Res Public Health. 2015;12(11):14519-14528. Published 2015 Nov 13. doi:10.3390/ijerph121114519
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661664/Havas M. Dirty electricity elevates blood sugar among electrically sensitive diabetics and may explain brittle diabetes. Electromagn Biol Med. 2008;27(2):135-146. doi:10.1080/15368370802072075
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2557071/Li, DK., Chen, H., Ferber, J.R. et al. Exposure to Magnetic Field Non-Ionizing Radiation and the Risk of Miscarriage: A Prospective Cohort Study. Sci Rep 7, 17541 (2017). https://doi.org/10.1038/s41598-017-16623-8
https://www.nature.com/articles/s41598-017-16623-8Makker K, Varghese A, Desai NR, Mouradi R, Agarwal A. Cell phones: modern man's nemesis? Reprod Biomed Online. 2009 Jan;18(1):148-57. doi: 10.1016/s1472-6483(10)60437-3. PMID: 19146782.
https://www.ncbi.nlm.nih.gov/pubmed/19146782K. Liu Y. Li G. Zhang J. Liu J. Cao L. Ao S. Zhang, Association between mobile phone use and semen quality: a systemic review and meta‐analysis, American Society of Andrology, 03 April 2014 doi: 10.1111/j.2047-2927.2014.00205
https://onlinelibrary.wiley.com/doi/full/10.1111/j.2047-2927.2014.00205.xMarshall TG, Heil TJR. Electrosmog and autoimmune disease. Immunol Res. 2017;65(1):129-135. doi:10.1007/s12026-016-8825-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406447/Boscolo, Paolo. (2014). Electromagnetic fields and autoimmune diseases. Prevention & Research. 10.11138/PER/2014.3.2.079.
https://journal.preventionandresearch.com/materiale_cic/766_3_2/6599_electroma/article.htmBagheri Hosseinabadi M, Khanjani N, Ebrahimi MH, Haji B, Abdolahfard M. The effect of chronic exposure to extremely low-frequency electromagnetic fields on sleep quality, stress, depression and anxiety. Electromagn Biol Med. 2019;38(1):96-101. doi: 10.1080/15368378.2018.1545665. Epub 2018 Dec 14. PMID: 30547710.
van Wijngaarden E, Savitz DA, Kleckner RC, Cai J, Loomis D. Exposure to electromagnetic fields and suicide among electric utility workers: a nested case-control study. West J Med. 2000 Aug;173(2):94-100. doi: 10.1136/ewjm.173.2.94. PMID: 10924428; PMCID: PMC1071010.
https://pubmed.ncbi.nlm.nih.gov/10924428/Pall ML. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat. 2016 Sep;75(Pt B):43-51. doi: 10.1016/j.jchemneu.2015.08.001. Epub 2015 Aug 21. PMID: 26300312.
https://pubmed.ncbi.nlm.nih.gov/26300312/Copper was very popular throughout history - with an extremely important area of use being health! In recent years, scientists have started to closely study and better understand copper. They’ve discovered some of the reasons why our ancestors found copper to be so beneficial and ways that we can better use copper in our societies today.
Collins JF, Klevay LM. Copper. Adv Nutr. 2011;2(6):520-522. doi:10.3945/an.111.001222
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226389/National Research Council (US) Committee on Copper in Drinking Water. Copper in Drinking Water. Washington (DC): National Academies Press (US); 2000. 3, Health Effects of Copper Deficiencies.
Solomons NW. Biochemical, metabolic, and clinical role of copper in human nutrition. J Am Coll Nutr. 1985;4(1):83-105. doi: 10.1080/07315724.1985.10720069. PMID: 3921587.
https://www.ncbi.nlm.nih.gov/pubmed/3921587Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541-1547. doi:10.1128/AEM.02766-10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067274/Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018 May;124(5):1032-1046. doi: 10.1111/jam.13681. Epub 2018 Feb 2. PMID: 29280540.
https://www.ncbi.nlm.nih.gov/pubmed/29280540Warnes SL, Little ZR, Keevil CW. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio. 2015;6(6):e01697-15. Published 2015 Nov 10. doi:10.1128/mBio.01697-15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659470/Singh A, Krishna V, Angerhofer A, Do B, MacDonald G, Moudgil B. Copper coated silica nanoparticles for odor removal. Langmuir. 2010 Oct 19;26(20):15837-44. doi: 10.1021/la100793u. PMID: 20839856.
https://www.ncbi.nlm.nih.gov/pubmed/20839856Zatcoff RC, Smith MS, Borkow G. Treatment of tinea pedis with socks containing copper-oxide impregnated fibers. Foot (Edinb). 2008 Sep;18(3):136-41. doi: 10.1016/j.foot.2008.03.005. Epub 2008 May 19. PMID: 20307427.
https://www.ncbi.nlm.nih.gov/pubmed/20307427Ali, A., Baheti, V., Militky, J. et al. Comparative Performance of Copper and Silver Coated Stretchable Fabrics. Fibers Polym 19, 607–619 (2018). https://doi.org/10.1007/s12221-018-7917-5
https://link.springer.com/article/10.1007/s12221-018-7917-5Duran, D. & Kadoglu, Huseyin. (2012). Research on electromagnetic shielding with copper core yarns. Tekstil ve Konfeksiyon. 22. 354-359.
https://www.researchgate.net/publication/286852685_Research_on_electromagnetic_shielding_with_copper_core_yarns“ Birch veneers plated with crystalline copper film exhibit high electro-conductivity with surface resistivity of 119.1 mΩ cm−2 and good electromagnetic shielding effectiveness of over 60 dB in frequencies ranging from 10 MHz to 1.5 GHz.”
Sun, L., Li, J. & Wang, L. Electromagnetic interference shielding material from electroless copper plating on birch veneer. Wood Sci Technol 46, 1061–1071 (2012). https://doi.org/10.1007/s00226-012-0466-y
Dasaradan, B. (2009). Electromagnetic shielding effectiveness of copper core yarn knitted fabrics. Indian Journal of Fibre and Textile Research. 34.
Cheng, K.B. & Lee, K.C.. (2000). Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing. 31. 1039-1045. 10.1016/S1359-835X(00)00071-3.
https://www.researchgate.net/publication/223946472_Electromagnetic_shielding_effectiveness_of_copperglass_fiber_knitted_fabric_reinforced_polypropylene_compositesS Spatari, M Bertram, K Fuse, T.E Graedel, H Rechberger, The contemporary European copper cycle: 1 year stocks and flows, Ecological Economics, Volume 42, Issues 1–2, 2002, Pages 27-42, ISSN 0921-8009, doi: 10.1016/S0921-8009(02)00103-9.
https://www.sciencedirect.com/science/article/abs/pii/S0921800902001039Borkow G. Using Copper to Improve the Well-Being of the Skin. Curr Chem Biol. 2014;8(2):89-102. doi:10.2174/2212796809666150227223857
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556990/Harris ED, Rayton JK, Balthrop JE, DiSilvestro RA, Garcia-de-Quevedo M. Copper and the synthesis of elastin and collagen. Ciba Found Symp. 1980;79:163-82. doi: 10.1002/9780470720622.ch9. PMID: 6110524.
https://www.ncbi.nlm.nih.gov/pubmed/6110524O'Dell, B. L. “Roles for Iron and Copper in Connective Tissue Biosynthesis.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 294, no. 1071, 1981, pp. 91–104. JSTOR, www.jstor.org/stable/2395557. Accessed 6 Jan. 2021.
https://www.jstor.org/stable/2395557?seq=1